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ABSTRACT

ON AUTONOMOUS MULTI-AGENT CONTROL IN WILDERNESS SEARCH AND

RESCUE: A MIXED INITIATIVE APPROACH

Benjamin C. Hardin

Department of Computer Science

Master of Science

Searching for lost people in a Wilderness Search and Rescue (WiSAR) scenario is a task

that can benefit from large numbers of agents, some of whom may be robotic. These agents

may have differing levels of autonomy, determined by the set of tasks they are performing.

In addition, the level of autonomy that results in the best performance may change due to

varying workload or other factors. Allowing a supervisor and a searcher to jointly decide

the correct level of autonomy for a given situation (“mixed initiative”) results in better

overall performance than giving an agent absolute control over their level of autonomy

(“adaptive autonomy”) or giving a supervisor absolute control over the agent’s level of

autonomy (“adjustable autonomy”).
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Chapter 1

Introduction

Searching for lost people in wilderness terrain (Wilderness Search And Rescue, or WiSAR)

is a large problem domain that is comprised of many smaller though related problems, such

as building maps, managing logistics, and searching. Many of these smaller tasks have the

potential to benefit from a team of multiple agents and, from a practical standpoint, many

WiSAR tasks require a large number of agents. These agents can be a combination of

human and robotic, but as the number of agents working on a task increases, so does an

Incident Command Supervisor’s (hereafter “supervisor”) potential workload. The inflow

of information increases, along with the attendant problems of managing, correlating,

and applying the information. Coordinating and assigning tasks, managing the safety of

teams, and strategizing becomes more complex and time-consuming. This can negatively

affect overall performance as the supervisor has less situation- and change-awareness, more

mental workload, and less time to spend managing the agents [20].

To address increased workload in scenarios such as this, a common solution is to give

the agents autonomy. Autonomy can be characterized many different ways (discussed in

detail later), but in general, autonomy is defined by what tasks the agents take or are

assigned [32]. These tasks can be broadly defined, or broken down into as much detail as

necessary. In a WiSAR scenario, the most basic high-level task is searching for a missing

person. Subtasks may include dividing the search area into subareas, dividing the agents

into teams, and assigning each team to a subarea. Sets of related or interconnected tasks

1
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are commonly referred to as roles [30]. An agent’s level of autonomy, then, is the role or

set of roles the agent fulfills. This leads to a key question: who or what determines the

agent’s level of autonomy?

If an agent is capable of at least some level of autonomous behavior, another question

can be asked: can the agent’s level of autonomy change? WiSAR scenarios are very fluid;

challenges include complex terrain, agent availability, agent capability, human workload,

weather, and many other contingencies. Each of these may be variable and can change

throughout the duration of the situation; a search could move from flat to mountainous

terrain, robotic agents could malfunction, or human searchers may only be available on a

certain schedule. However, a human supervisor might not always be able to respond quickly

or efficiently to changes in these variables due to workload or other demands on attention.

One possible solution is to ignore the loss of performance and keep each agent at a static

level of autonomy. If the agents have the ability to assume different levels of autonomy,

however, one can consider two approaches: adaptive autonomy (allowing the agents to

change their own level of autonomy) and adjustable autonomy (allowing a supervisor to

explicitly change the agents’ level of autonomy). In addition, a hybrid or “mixed initiative”

solution can also be considered where the agent and supervisor collaborate to maintain

the best perceived level of autonomy.

Assuming a set of WiSAR tasks that must be performed, and given a set of agents with

the ability to perform those tasks autonomously, this thesis will compare the performance

that results from the agents using adaptive autonomy, using adjustable autonomy, and

using a mixed initiative combination. In the mixed initiative situation, there are many

combinations of adjustable and adaptive autonomy to consider, so the focus will be lim-

ited to some “interesting” combinations, based on initial empirical experiments. In terms

of a research hypothesis, this thesis will demonstrate that, given the constraints listed,

performance in some metrics may decrease by using mixed initiative, but overall perfor-

mance will improve by jointly taking advantage of an agent’s capabilities and immediate

but locally-detailed knowledge, and a supervisor’s more complete but delayed knowledge.

2
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1.1 Thesis Statement

Given a search task in a Wilderness Search and Rescue domain performed by a large

heterogeneous group of agents, a mixed initiative system implementing both adaptive and

adjustable autonomy performs better in a complex or high workload situation than a

simply adjustable or adaptive system.

1.2 Thesis Organization

In the next chapter we review related literature. Chapter 3 contains an overview of the

experiment and simulator design. Chapter 4 discusses results over several metrics. Chapter

5 outlines our conclusions and gives possible future research directions.

3
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Chapter 2

Related Literature

Much has been written about search and rescue (SAR) [13] - [17], though less has been

written about its sub-field of wilderness search and rescue (WiSAR) [40]. Rather than

presenting a complete survey of all papers in these fields, this thesis will focus on related

literature in more specific areas such as autonomy, teams, and coordination.

2.1 Autonomy

The definition of autonomy, as it applies to robotic actions, has been discussed in the

literature in detail, with most definitions falling either into a function or task allocation

category. Task allocation breaks tasks down into atomic sub-tasks [26]. Function allocation

can be considered a weak form of task allocation [26], with basic functions being identified

and being used no matter what the task breakdown is. One of the problems of function

allocation is defining the basic functions, however, so we will use autonomy that employs

task allocation. One definition of autonomy is that it is “an agent’s active use of its

capabilities to pursue some goal, without intervention by any other agent in the decision-

making process used to determine how that goal should be pursued” [7]. Other definitions

content themselves with simply equating autonomy to control [18], while others go into

more detail of precisely what is being controlled [30].

The reason one would care about the definition of autonomy is that one might wish to

4
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apply it in concrete domains. Although autonomy can take an infinite number of forms and

can be argued to be continuous [10], some people have attempted to cast it into practical

roles. Endsley and Kaber describe four key roles: monitoring system status, generating

strategies or options, selecting between those options, and implementing the chosen option

[30]. In our WiSAR mission, checking to see if the UAVs are on path is an example of

monitoring. Listing different teams that are able to move to that location and choosing

one of them would be an example of generating and selecting, respectively. Performing the

actual search would be an example of implementing. The level of autonomy, then, would

be the combination of roles or superset of tasks that an agent takes.

Sheridan and Verplank first classified the different autonomous forms into discrete levels

of autonomy [42], then later revisited it [38][41]. Endsley and Kaber also present a Level

Of Autonomy (LOA) taxonomy. An overview of the development of various taxonomies

can be found in [30]. More recently, there has been some work on defining levels of team

autonomy [23], although this area is still new and this thesis will attempt to add to it.

Different levels of autonomy imply an ability of agents to exchange their current level

of autonomy for a new one. Changing autonomy has variously been described as “mixed

initiative” [21] - [22], “sliding autonomy” [11][25], “dynamic autonomy” [36], “adjustable

autonomy” [10][21][22], or “adaptive autonomy” [5][6]. Some researchers make the dis-

tinction between which field the autonomy is being explored in; for example, what the

aerospace and space robotics field often calls “adjustable autonomy,” the artificial intelli-

gence field frequently calls “mixed initiative” [21]. Other researchers consider the terms

to mean the same thing.

Since the terminology is subjective, this paper will simply consider three terms: “ad-

justable autonomy,” “adaptive autonomy,” and “mixed initiative.” This paper will define

“adjustable autonomy” to mean a system of autonomy which requires a supervisor, mon-

itoring system, or other outside influence to change the level. “Adaptive autonomy” will

describe a system that allows the agent itself to change its own autonomy, perhaps based off

various performance metrics or other trigger strategies. “Mixed initiative,” then, is where

5
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both the supervisor and agent share in deciding the proper level of autonomy. These

are meant to be high-level definitions. Precise implementation, role refinement, or task

divisions may differ between domains.

2.2 Teams

Since this paper will be working with agents in a WiSAR domain, autonomy taxonomies of

interest are those that can be scaled to large numbers of agents, or teams of agents. This

in turn requires one to look at what exactly makes a team. Unfortunately, experimenting

with large-scale teams can have a prohibitive cost, resulting in very little prior research

about massively multi-robot situations. The majority of existing research deals with swarm

robotics [8][33], which applies loosely at best to the search and rescue domain. Most other

prior research in multi-agent teams addresses fewer than a dozen agents of two or three

different types [1][31] with a large subgroup of research devoted to 11-agent robotic soccer

teams [12][16]. Certain results found from these teams could potentially scale to a large

WiSAR team, but other problems are unique to a large team.

In addition, much work has been done on the actual formation of teams or coalitions,

including initial experiments in applying algorithms to real-life robots rather than soft-

ware agents, in non-simulation scenarios [45]. However, this work focuses on peer-to-peer

negotiating. While there may be some peer-to-peer negotiating inside a team while as-

signing low-level tasks in WiSAR, this paper will assume the supervisory method of team

formation.

2.3 Metrics

Metrics for measuring human-robot interactions can be divided into three main categories:

operator, robot, and system (measuring teamwork between human and robotic agents) [20].

Within these categories, there are several major metrics that are particular to each.

When discussing a hierarchical team organization, the idea of “span of control” [44] or

6
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“fanout” [15][29] is an important system metric. Because of time and attention constraints,

a supervisor can effectively control a limited number of subordinates. This number may

depend on the interconnectedness of the subordinates’ work and the level of performance

that is desired or required, as well as other factors.

System metrics can be divided into quantitative and subjective measures. Quantitative

measures include the efficiency and effectiveness of a team under various autonomous

modes. Subjective measures can also be taken from all involved parties, in our case the

team supervisor, including ease of control. In our experiments, we will also want to assess

whether we appropriately utilized mixed-initiative.

Metrics specific to the robotic agents in our scenario include measurements of how

aware the robotic agents are of other robotic or human agents, the humans working with

them, and autonomy metrics such as neglect tolerance [37].

In addition, we consider two major measures of operator performance: workload and

situation awareness [20]. Workload becomes important in a WiSAR domain because of its

inherently hierarchical nature and life-critical tasks. A single supervisor may be responsible

for overseeing many subordinates, with a workload inversely proportional to the level of

autonomy granted or adopted by them. Situation awareness [30], on the other hand, can be

negatively impacted by an increased level of autonomy of subordinates [3]. The question

of whether increased autonomy results in an overall increase of operator performance will

need to be addressed as well.

7
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Chapter 3

Experiment Design

Two experiments were performed. The first experiment had a three by two design, compar-

ing performance over three types of autonomy (adaptive, adjustable, and mixed initiative)

and two levels of workload (high and low). A high level of workload was created by uni-

formly distributing 400 distracting items across the map, and a low level of workload was

created by distributing 200 distracting items. Experiments were counterbalanced to avoid

learning effects. 12 people voluntarily participated in the first experiment and performed

four simulations each, resulting in 48 test cases. Subjects were compensated for their time.

Data was collected between December 2007 and February 2008.

As we believed, the first experiment showed little difference in performance between

high and low levels of autonomy. As a result, the second experiment adopted a uniformly

high level of workload. The second experiment also had a three by two design, comparing

performance over three types of autonomy (adaptive, adjustable, and mixed initiative) and

whether the supervisor had expert knowledge (yes or no). To simulate expert knowledge,

which our random pool of experimenters did not have, five “clouds” were placed on the

map, corresponding to places where expert knowledge would indicate had the highest

probability of containing missing person (Figure 3.2). These clouds did not equate to

perfect knowledge, however: one of the five clouds was not paired with one of the five

missing people. Results were compared between scenarios where the experiment had the

expert knowledge clouds, and scenarios where they did not. 18 people participated in the

8
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second experiment, resulting in 72 test cases. Subjects were compensated for their time.

Data was collected between February and March 2008.

At the beginning of each experiment, subjects participated in a training mission, lasting

approximately 10 minutes, which introduced them to the functions and controls of the

simulator, as well as explaining the purpose of their mission.

3.1 Arenas

One issue when considering or comparing results is reproducibility. Both the original

experimenter and other experimenters need to be able to reproduce the results for true

validation. Whether live or in simulation, however, there are many factors that can affect

performance, making it difficult to determine which factors influenced the results the most.

One significant factor can be the environment in which the experiments are run, meaning

the particular structure of the wilderness area (often called a field in this thesis) in which

the search takes place. With an eye to facilitating reproducibility of wilderness search and

rescue simulations, we have created several test fields. An example is shown in Figure 3.1.

A similar thing was done in urban search and rescue [27]. Three standardized test are-

nas simulate various stages of urban environment complexity. These arenas allow disparate

teams to test the performance of their robotics teams while still making it acceptable to

compare results.

While these urban arenas can be physically built to allow live experimentation, a

wilderness arena brings additional difficulties. First, given the vast sizes of wilderness areas,

it is impossible to reproduce a wilderness arena at will. Second, using a standardized live

wilderness setting can lead to training overfit. However, since our initial wilderness search

and rescue experiments are performed in simulation, we can at least create a simulated

wilderness arena that will allow us to reproduce our results and compare performance with

other simulations that run on the same arena. Although our experiments were run on four

unique maps held constant for the purposes of comparison between experiments, a more

general technique would be to randomly generate maps based on percentages of passable

9
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Figure 3.1: Example Test Field

10
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or impassible terrain, random placement of obstacles, and random placement of missing

people to avoid overfitting to a particular situation.

When creating the urban test arenas, previous research considered several categories

of agent capabilities: mobility, sensing, knowledge representation, planning, autonomy,

and collaboration. Once these components were identified, arenas were created to tax

the agents employing them. We can take ideas from these urban arenas, while adding

necessary new factors to preserve ecological validity for a wilderness arena. We will look

at each component in turn.

• Mobility. Travel through an urban environment will be shaped by rubble, elevation

changes through stairs and ramps, stability of the travel surface, size and shape of

passageways, and even the material of the travel surfaces. In wilderness search and

rescue, travel may be hindered by obstacles such as cliffs, water, heavy brush, or

elevation changes; or could be helped by trails or watercourses. However, the urban

arenas presuppose ground robots while a wilderness search might include ground and

air searchers, with specialty teams for water and cliffs or other technical terrain.

• Sensing. In urban search and rescue, robots may have to sense acoustic, thermal and

visual signals to locate victims. These signals may be distorted or noisy due to the

environment. The same holds true in wilderness search and rescue, although signals

may need to be sensed at greater distances. In addition, dog teams or robotic agents

that can sense chemical markers may be able to access scent signals.

• Knowledge representation. In both urban and wilderness search and rescue, a robot

may have to make maps and mark locations of obstacles, missing people, unsearched

areas, or exits. Similarly, a wilderness arena should be complex enough to require

map-making, albeit on a larger scale.

• Planning. Partly due to the larger spatial areas that must be covered and the

additional issue of victims possibly changing their spatial location, planning is just

as vital in wilderness search and rescue as in urban. Chokepoints should be inspected

11
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and possibly monitored; constraints can be applied by patrolling borders.

• Autonomy. Communication may be impossible, noisy, or inconsistent due to terrain,

faulty equipment, or other reasons. A supervisor may not have enough time to give

constant directions. Situations may arise that require immediate reaction from the

searcher to avert danger or facilitate rescue. In these cases, the agent may have to

employ autonomy; whether adaptive, adjustable, or mixed-initiative.

• Collaboration. In many wilderness search and rescue scenarios, search is less a mat-

ter of carefully negotiating a technical and dangerous situation and more a matter

of searching a large area as quickly as possible. Regardless, a wilderness search

and rescue can benefit from a large number of searchers. In this case, peer-to-peer

collaboration between agents or collaboration between a supervisor and agents is

essential.

Several things set wilderness search and rescue apart from urban search and rescue.

In an urban disaster scenario, there are often multiple victims, their location is known to

within a few meters, and their location does not change significantly over the course of the

rescue or recovery. In a wilderness scenario, there is often just a single victim. The victim

is possibly moving, and their travel decisions may not be based on logic. There often are

not enough searchers to effectively cover the search area. Rather than a single all-purpose

searcher commonly used in urban scenarios, there may be need for specialized teams to

handle different terrains or situations: aquatic teams of rivers or lakes, climbers or rapellers

for cliffs, and so forth. These factors all combine to make it difficult to statistically measure

and average the performance of a search system. As a result, a wilderness simulator may

be forced to sacrifice some ecological validity for statistical significance by implementing

multiple victims. In our case, we scattered five identical missing people across the map,

each approximately equidistant from the starting location of the searchers. This removed

statistical anomalies arising from a fortunate or unfortunate choice of initial direction by

the search supervisor, allowing us to average the amount of time to find each person.

12
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In addition, we gave each of the five missing people 16 identical items (Figure 3.5).

Each of the people, in the course of their simulated wandering, lost a subset of 10 of

those 16 items, scattered following a Gaussian distribution around the final location of the

person. Those items, when found (Figure 3.6), allowed the search supervisor to focus their

attention, knowing the missing people were in the vicinity. Finally, “distracting” items

were scattered across the map following a uniform distribution, providing a secondary task

and additional workload for the search supervisors as they classified the items as “good”

items or “distracting” items.

The terrain we chose for the four scenarios ranged from primarily flat to extremely

rugged. Mobility of the search agents was affected by impassible terrain of varying degrees

of complexity. For our experiments, we chose to preserve ecological validity by implement-

ing only basic sensing, giving our simulated searchers simple proximity-based sensors. In

addition, sensing was deliberately made imperfect. For our first set of experiments, search

grids of varying density were implemented, with probabilities of discovery based on previ-

ously gathered data [40].

For a search grid with 30 meter spacing between searchers, probability of detection was

50 percent. Spacing searchers 18 meters apart resulted in a 70 percent chance, and spacing

them 6 meters apart resulted in a 90 percent chance of detection. Search supervisors were

required to decide on a trade-off between a fast search that covered a large amount of

ground and took fewer searchers but resulted in a lower probability of detection; or a

detailed search that took more searchers, covered less ground, but had a higher chance of

finding a missing person. Because of the probabilistic nature of item or missing person

discovery, supervisors could potentially have to make several passes over the same search

area to recover all items or find the missing person.

The peoples’ missing items, distracting items, and the people themselves all had the

same probability of discovery. Later experiments cared less about measuring the trade-off

between the different search patterns, and we removed the option of the 18 meter search

pattern while retaining the 30 meter and 6 meter patterns.
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Each experiment gave the supervisor control of 200 searchers. The searchers were

giving the capability to act autonomously, and finding the method of choosing their level

of autonomy that resulted in the best performance was our primary objective. The three

methods we looked at were adaptive, adjustable, and mixed initiative.

3.2 Autonomy

In adaptive scenarios, the searchers chose their own level of autonomy, with no direct

input from the supervisor. They would begin with a general 30 meter sweep, focusing

on the center of the search area before fanning out to the more distant locations. In our

experiments we called this the “high” level of autonomy, since they had no direct input from

the supervisor. The supervisor’s task was limited to classifying items the searchers found;

although by choosing to “keep” items they could still indirectly influence the searchers’

level of autonomy.

The moment the supervisor elected to retain an item by clicking the “keep” button,

a subset of searchers would create a smaller, more detailed 6 meter search area centered

around the item and adaptively change their level of autonomy to a “medium” level to

conduct a detailed search. At this medium level of autonomy, they would continue to

search the search area until they found the missing person and the supervisor classified

it as such. After they discovered the missing person in the detailed search area and the

supervisor classified the person as such, the searchers would immediately return to high

autonomy and continue a broad search for the remaining missing people. In the scenarios

that employed adaptive autonomy, the searchers never chose to go to low autonomy.

In adjustable scenarios, the search supervisor had to initiate all changes in the searchers’

level of autonomy. A menu was available which allowed the supervisor to grant high

autonomy. This would give the searchers permission to create their own search areas

and then search them, successively moving on to new search areas as they completed the

previous one.

Whether the searchers were at high or low autonomy, if the supervisor created a “small”
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(defined as less than 22,500 square cells, e.g. 150 by 150 cells if square) search area

around a discovered and classified item, then assigned searchers to it, the searchers would

immediately go to a medium level of autonomy. At this medium level, they would continue

searching until they discovered the missing person and the supervisor classified it as such,

repeating the search as many times as necessary. After the missing person was located

and classified, the searchers would complete their current search area to discover as many

backpack items as possible, then return to a low level of autonomy and await further

instructions. When they had low autonomy, the searchers would perform a search of an

assigned area, then await further instructions.

In mixed initiative scenarios, the searchers would start with a high level of autonomy,

and return to high autonomy whenever possible. If the search supervisor assigned them

to a search area, they would immediately assume a low level of autonomy and search the

area. When the search was complete, the searchers would return to high autonomy and

choose their own subsequent search area. Similarly, as soon as they completed a detailed

search area at medium autonomy, they would also return to high autonomy, exactly like

agents operating under adaptive autonomy.

A supervisor could manually create a small (arbitrarily defined) search area around a

discovered and classified item. Assigning searchers to it would result in them assuming a

medium level of autonomy, but as soon as their search was complete, they would imme-

diately return to high autonomy. However, while operating under mixed initiative, if an

item was discovered and classified as a backpack item, the searchers would also take the

initiative and create their own small search area around them, moving to medium auton-

omy for the duration of the search of the small area. Identical to adaptive autonomy, they

would search the area at medium independence until the missing person was discovered

and classified, then return to high autonomy.
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3.3 Metrics

Prior to and during the experiments, several key metrics were identified. These fell ap-

proximately into three categories: primary task performance, secondary task performance,

and management overhead/workload. We will discuss different metrics for each of these

categories in the subsections that follow. Note that we assigned a level of importance to

each metric, although this assignment was very subjective. Depending on the exact goals

of a given task or scenario, the relative importance of each metric may be adjusted.

3.3.1 Primary Task Performance

Task performance metrics focus primarily on the results. Most of these metrics revolve

around the primary task of finding and classifying the missing people, and the secondary

task of finding as many backpack items as possible. In addition, supporting or related

tasks are also considered, such as covering as much ground as possible. We will look at

the key primary task performance metrics first.

• Average number of missing people classified. (High Importance) This is one of the

more significant metrics. In the end, the main measure of success in a wilderness

search and rescue domain is whether the missing person is recovered. Finding as

many of the five missing people as possible was the supervisor’s primary task.

• Probability of success. (High Importance) This is a metric that is used in the Search

and Rescue community, and relates the “probability of area” (the probability that the

missing person is contained in a given search area) with the “probability of discovery”

(the probability of actually seeing the missing person when searching near them).

As this metric is more complex than others, it will be described in more detail later.

• Percentage of times all five missing people were found. (Medium Importance) Al-

though the experiment was deliberately designed to make discovery of all five lost

people difficult, it did still happen. This is another strong metric.
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• Average time to find all five missing people. (Medium Importance) This metric is

valid only for scenarios where all five missing people were found.

3.3.2 Secondary Task Performance

Secondary tasks are any tasks that do not directly involve finding the missing people. The

most important secondary task is finding as many of the backpack items as possible, but

additional ones are also outlined below.

• Average number of backpack items classified. (Medium Importance) Experimenters

were told that their primary task was to find all five of the missing people, but they

had a secondary task of finding as many of the 50 (10 per missing person) backpack

items as possible. This number can be broken into two sets of scenarios: those where

the searcher first accomplished their primary task of finding the missing people, and

those where the searcher performed both primary and secondary tasks in tandem.

• Average number of distractors classified. (Low Importance) This value should be

proportional to the amount of terrain covered.

• Average searcher distance, or number of cells moved. (Low Importance) For the

purposes of our experiments, each cell was considered to be six by six meters. This

allowed us to easily translate the 30-, 18-, and 6-meter search spacing into 5-, 3-, and

1-cell spacing. However, by doing this, we must consider “time” in the experiment

to be highly sped up, since in our simulations, the travel speed was approximately

4 cells per second. Additionally, it must be noted that the traveling speed of the

agents was not guaranteed to be ecologically valid given the terrain they were on, i.e.

the searchers’ speed remained constant regardless of terrain. Future work may wish

to employ a more precise simulation of time and space. Similar to the next metric

(average timesteps inactive), both adaptive autonomy and mixed initiative should

result in approximately equal values for the average searcher distance, since the

agents have the initiative in both cases to continually search without being required
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to stop moving to wait for instructions.

• Simple coverage. (Low Importance) This metric gives the percentage of the search-

able terrain that was jointly covered by the searchers. This number is not weighted

by the most probable locations of the missing people nor the depth to which the

terrain was searched, so it may be of limited usefulness.

3.3.3 Management Overhead/Workload

Management overhead and workload metrics measure demands on or performance of the

supervisor. Several of these metrics are related to task performance metrics, and may

even involve the primary or secondary tasks, but their emphasis is on the abilities and

responses of the supervisor rather than the task itself. Primary workload, as we measured

it, included creating search areas, selecting agents, assigning agents a destination on the

map, and assigning agents to search areas.

• Average timesteps inactive. (Low Importance) This value only applies to adjustable

autonomy, since the agents operating under adaptive autonomy or mixed initiative

have the ability to instantly choose a new task when they complete their previous

one, rather than going inactive. Under adjustable autonomy, however, agents may

be idle while waiting instruction from the supervisor.

• Average number of timesteps taken to classify items. (Medium Importance) Time is

counted from when an item is discovered by the searchers and placed in the classi-

fication queue, to the point when the supervisor chooses to keep or reject the item.

This metric is a factor of the amount of workload that results from tasks other than

classifying items, such as creating search areas and directing the searchers. Adaptive

autonomy should result in the best value for this metric, since the supervisor’s only

task is to classify items. Mixed initiative and adjustable autonomy should both be

approximately equal.
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• Workload. (Medium Importance) Workload can include creating search areas, se-

lecting searchers, assigning searchers to search areas, changing searchers’ autonomy

level, and classifying items.

• Average time between finding the first item belonging to a particular missing person

and finding the missing person. (Medium Importance) This is a factor of both the

response time of the controlling entity (the supervisor in an adjustable autonomy

situation, the search agents themselves using adaptive autonomy, or both while using

mixed initiative) and their strategy (the number of agents assigned to the search area,

etc.).

• Percentage of items correctly classified. (Low Importance) This value does not have

much significance, since all scenarios should have a similar, almost perfect score.

All of the items are available to view so there is no memorization necessary. After

classifying items as “good” or “bad,” there was no reversing the decision. There

was no indication during the experiment whether they classified items correctly or

incorrectly.

3.3.4 Probability of Success

One important primary task performance metric is the probability of success.

Probability of success can be difficult to interpret due to the lack of a formal technique

for either discretizing a search area or weighting each discretization. In its simplest form,

it is calculated by multiplying the probability of detecting the missing person (“probability

of detection”) given a certain search pattern by the probability that the missing person

was in the search area to begin with (“probability of area”). Calculating the probability of

success becomes more difficult when several search techniques with different probabilities

of detection are used, or a search area is divided into sub-areas with different probabilities

of detection due to different terrain or other factors. In addition, the sub-areas can have

different probabilities of containing the missing person, which probabilities can be drawn
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from expert knowledge, historical or statistical data or knowledge of the missing person’s

habits, capabilities, or personality.

When the search area is discretized, the probability of success for a given area is found

by summing the product of each discretization’s probability of detection and probability

of area, then dividing by the maximum possible probability of detection multiplied by the

probability of area. In our experiments we used a linear decay distribution around each

missing person to weight our probability of area, ranging from a probability value of “1”

directly over the missing person to a probability value of “0” at a radius of 50 cells from

the missing person.

3.4 Simulator

The primary view of the main window (Figure 3.2) shows the location of the 200 searchers

(the small yellow squares), the search areas (the large box with the diagonal lines), and

a satellite view of the terrain. The five black clouds represent expert knowledge of the

supervisor, and indicated areas that the supervisor’s experience and intuition mark as the

locations with the highest probability of containing the missing person.

Figure 3.3 shows an accessibility or simplified terrain map. Brown regions are moun-

tainous and considered inaccessible; blue regions indicate water and are likewise inacces-

sible. Grey lines indicated roads or trails.

Figure 3.4 shows the action window. This allows the supervisor to choose between the

two main actions: selecting and moving searchers, or creating search areas. After choosing

the action marked “Create Search Area,” the supervisor may use the mouse to draw one

or more search areas of any size on the map. When the action titled “Select and Move

Searchers” is chosen, a supervisor may use the mouse to highlight a number of searchers.

Clicking on a location on the map or on a search area will command the searchers to move

to that location or search the given search area, respectively.

The two green columns marked “Searcher Activity” and “Item Count” give the su-

pervisor a quick, high-level look at their current performance. As the searchers become
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Figure 3.2: Simulator Main Window with Expert Clouds
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Figure 3.3: Simulator Main Window, Terrain View
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Figure 3.4: Action Window, Activity Monitor, and Scorecard

idle, the column marked “Searcher Activity” will drop, turning yellow to indicate that a

significant number of searchers are inactive, and finally red to indicate that the majority

of the searchers are idle. Similarly, the column marked “Item Count” will turn yellow as

found items begin accumulating in the found items window (discussed below), and finally

red when there are a large number of items that are waiting classification.

The “score” was merely used to allow participants to compare themselves against other

participants, encouraging them to perform at the best of their abilities. Each discovered

person awarded the subject with 100 points, each backpack item earned them 10 points,

and each false item correctly classified as such earned them one point. This had the

added benefit of continually reminding them of their priorities and the approximate weight

between their primary task of locating the missing people and their secondary task of

discovering as many backpack items as possible. This score was not used for anything

other than subject encouragement.

At the top of the backpack window (Figure 3.5) was a picture of the missing person. All

five of the missing people were considered “identical quintuplets.” Below this picture were
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16 additional pictures of the contents of the missing person’s backpack. All five people

had identical backpack items. Each person lost 10 of their 16 items, chosen at random.

Items that the searchers discovered as they traveled or searched an area were put

in the found items window (Figure 3.6). Each item had two buttons, marked “Keep”

and “Reject.” Participants were instructed to keep items that came from the peoples’

backpacks, and reject distracting items. Backpack items that were discovered looked

identical to their pictures in the backpack window: no interpretation was necessary. As

backpack items were correctly kept or distracting items were incorrectly kept, a small

white marker was placed on the map to indicate the location the item was discovered

at. No indication of false classification was given. When a person was discovered and

subsequently classified as a missing person, a green marker was placed on the map to

indicate his location.

Figure 3.7 shows a map with the locations of all the missing people and backpack items

indicated, identical to how they would appear if the supervisor had correctly located all

of them. The backpack items were distributed following a Gaussian distribution. The

missing people are indicated by small green circles (emphasized by red arrows in this

image), while the backpack items are indicated by small white circles. The initial location

of the searchers is also indicated.
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Figure 3.5: Simulator Backpack Window Figure 3.6: Simulator Found Items Window
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Figure 3.7: Main Window with Targets and Backpack Items Indicated
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Chapter 4

Results

Two formal experiments were performed. Experiment one was a preliminiary experiment

designed to help choose the level of workload for the main experiment. Following that, ad-

ditional data was gathered from several users to focus and validate certain design changes,

then the final, more informative experiment was performed.

4.1 Experiment One: High vs. Low Workload

The first experiment was designed to show whether there was a statistically significant

difference in performance when supervisors were given a high workload versus a low work-

load. In this case, workload was defined as the number of distracting items distributed on

the map. Denser distributions led to more distracting items being discovered, forcing the

supervisor to perform more classifications. A high workload was defined as 400 distracting

items scattered across the map following a uniform distribution, while a low workload was

200 distracting items.

Whenever it was established (using a two-way analysis of variance) that there was

a statistically significant difference across one of the independent variables (workload or

autonomy), we looked at the significance of certain pairwise combinations of autonomy

type/workload using t-tests. While looking at differences across workload, we looked at

combinations that differed across workload. Similarly, while looking at differences across
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autonomy, we looked at combinations that differed across autonomy.

The three significant comparisons while looking at differences across workload were

adaptive autonomy/high workload versus adaptive autonomy/low workload, adjustable

autonomy/high workload versus adjustable autonomy/low workload, and mixed initia-

tive/high workload versus mixed initiative/low workload. In subsection 4.1.1 these will be

referred to as the “three considered comparisons.”

The six significant comparisons while looking at differences across autonomy were adap-

tive autonomy/high workload versus adjustable autonomy/high workload, adaptive au-

tonomy/high workload versus mixed initiative/high workload, adjustable autonomy/high

workload versus mixed initiative/high workload, adaptive autonomy/low workload versus

adjustable autonomy/low workload, adaptive autonomy/low workload versus mixed ini-

tiative/low workload, and adjustable autonomy/low workload versus mixed initiative/low

workload. In subsection 4.1.2 these particular six comparisons will be referred to as the

“six considered comparisons.” All F-values and p-values (significance values) from the

analysis of variance can be found in Appendix C, while t-values can be found in Appendix

A.

4.1.1 Differences Across Workload

Of the metrics considered, only one resulted in a significant difference across workload

(F-value of 5.04, p-value of 0.032). While using adjustable autonomy, the average length

of time to classify items was significantly higher when there was a high level of workload.

Using mixed initiative, the difference in performance between high and low workload was

even greater (Figure 4.1). Looking at the three considered comparisons individually, t-

values indicate that each is statistically significant.

4.1.2 Differences Across Autonomy

Several metrics had a statistically significant difference across autonomy. Average searcher

distance, simple coverage, and average number of items classified all differed across au-
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Figure 4.1: Average time to classify items (high vs. low workload)

tonomy. Incidentally, these are the three metrics classified as “low importance” in Table

5.1.

Average searcher distance had an F-value of 13.29 and p-value of 0.0001. T-values

indicate that the differences between all six considered comparisons were statistically

significant except the comparison between mixed initiative/high workload and adaptive

autonomy/high workload. From Figure 4.2, however, we can see that even though the

difference between mixed initiative/low workload and adaptive autonomy/low workload

was statistically significant, it still was not great compared to the difference between ad-

justable autonomy and either adaptive autonomy or mixed initiative. When searchers

using adjustable autonomy completed a task, they became idle until given a new one while

searchers using adaptive autonomy or mixed initiative were able to pick a new task and

continue moving. This resulted in searchers using adaptive autonomy and mixed initiative

covering significantly more ground. Note that this says nothing about whether they were

searching in locations that had a high probability of containing the missing people.

The difference in performance in simple coverage between searchers using adaptive

autonomy and searchers using adjustable autonomy was proportional to the difference in
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Figure 4.2: Average searcher distance (high vs. low workload)

average searcher distance. Searchers using mixed initiative performed worse than adaptive

autonomy, but better than adjustable autonomy. The key to the difference is redundancy;

while searchers using adaptive autonomy covered a lot of ground, searchers directed by a

supervisor tended to focus on certain areas (presumed by the supervisor to have a high-

probability of containing the missing people). This resulted in less total ground covered,

but a deeper coverage of the searched areas. The difference across autonomy in this metric

was significant over all six considered comparisons, and had an F-value of 6.5 and p-value

0.0044.

The final significant metric we looked at was the average percentage of the total number

of items classified (Figure 4.3), with an F-value of 5.6 and a p-value of 0.0084. It was

significant over all six considered comparisons except the comparison between adjustable

autonomy/high workload and mixed initiative/high workload. It shows that adaptive

autonomy resulted in the largest percentage of items classified; adaptive autonomy’s larger

area of coverage resulted in a larger percentage of the distracting items being found.

The difference between high and low workload was not statistically significant (t-value of

0.03 and p-value of 0.05). At low workload, however, it was statistically significant that
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Figure 4.3: Percentage of items classified (high vs. low workload)

supervisors using mixed initiative were able to classify more items than supervisors using

adjustable autonomy. As previously mentioned, the improvement of mixed initiative over

adjustable autonomy at high workload was not statistically significant.

4.1.3 Two-Way Interactions

There were no significant two-way interactions between workload and autonomy in the

metrics considered.

4.1.4 Discussion

Overall, the level of workload did not significantly affect performance. The amount of time

it took to classify items was dependent on the level of workload, but this metric is not of

high importance (Table 5.1). Also, the average searcher distance, coverage, and number

of items classified were dependent on type of autonomy, but these three metrics are of

small importance (Table 5.1). From this we can conclude that the level of workload and

autonomy type is of minimal importance as far as performance is concerned.

As a result, we chose to perform all future experiments at a high level of workload.
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After this initial study was completed, we experimented with making the search more

difficult. This was done by decreasing the amount of ground searched for each movement,

as well as decreasing the probability of discovery for each search that was performed. This

second experiment will be looked at in more depth.

4.2 Experiment Two: Expert vs. Non-Expert Super-

visor

Each of the three types of autonomy provided a unique set of capabilities and method of

task execution, and as a result we would expect each to perform well in different metrics.

We will look at the categories of primary task performance, secondary task performance,

and management overhead/workload in turn.

Two-way analysis of variances run on each metric indicated that (a) none of the metrics

showed statistically significant differences between expert and non-expert supervisors, (b)

all the metrics showed a statistically significant difference across autonomy types, and (c)

none showed any statistically significant two-way interactions. As a result, we can infer

that the expertness of the supervisor did not affect the measured performance, and the

type of autonomy did. F- and p-values from the analysis of variance tests can be found in

Appendix D, and data and t-values can be found in Appendix B.

There were three exceptions; simple coverage was statistically significant across expert

level, autonomy type, and had two-way interactions, while the average time to find at least

one backpack item from both four and five missing people was statistically significant across

expert level and autonomy type. These will be discussed in-depth later.

4.2.1 Primary Task Performance

The searchers’ primary task was to locate the missing people. Speed, efficiency, and

completeness in their search facilited fulfilling this task, as did searching in areas that had

a high probability of containing the missing people. We will look at several metrics that
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Figure 4.4: Probability of Success

relate to performance in the primary task.

Probability of Success

Probability of success (described in Section 3.3.4) was one of the most important high-level

metrics to consider. Supervisors controlling searchers who employed mixed initiative had

the highest probability of success at 57.5 percent for expert supervisors and 56.9 percent for

non-expert searchers, although an analysis of variance showed that there was no statistical

significance to the difference between expert and non-expert searchers over any autonomy

type (F-vale of 1.13, p-value of 0.2919). Adjustable autonomy had the second highest

probability of success, while adaptive autonomy came in last (Figure 4.4). This difference

across autonomy type was statistically significant (F-value of 89.53, p-value of 0.0001).

Missing People

After looking at the high-level metric of probability of success, we can look at primary task

performance metrics that directly involve finding the missing people (our primary goal) or

finding their backpack items (our secondary goal).
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Figure 4.5: Total number of missing people found

The most ecologically valid measure is the number of missing people that were found;

measured results were found to be statistically significant with an F-value of 7.37 and p-

value of 0.0014. As described earlier, each scenario actually involved five missing people, to

allow for averaging the time to discovery and discovering exactly how many missing people

a person could find in the given time period. Figure 4.5 shows how adjustable autonomy

and mixed initiative resulted in the most missing people found on average, while adaptive

autonomy did significantly worse. This poor performance by adaptive autonomy can be

directly related to the agents’ lack of expert knowledge and poor decision making in their

choice of which areas to search; both factors which could be eliminated by allowing an

expert to input their knowledge. It must be noted that while the difference between

adaptive and adjustable autonomy was statistically significant, the difference between

adjustable autonomy and mixed initiative was not statistically significant (with expert

supervisor, t-value was 0.17 and p-value was 0.05; with non-expert supervisor, t-value

was 0.4 and p-value was 0.05), and the difference between mixed initiative and adaptive

autonomy was only significant with an expert supervisor (t-value of 2.97 and p-value of

0.05).
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Figure 4.6: The time to find all five missing people, when applicable

Looking at just the scenarios where the supervisor was able to find all five missing

people, we see that mixed initiative required less time than adjustable autonomy when

the supervisor was an expert, while adjustable autonomy required the least amount of

time when the supervisor was a non-expert (Figure 4.6). When agents were operating

under mixed initiative, the supervisor would often override the agent’s choice of actions

with one they deemed more effective. This often resulted in a waste of the agent’s time

and travel, but if the supervisor possessed expert knowledge, this overriding resulted in

a better end-performance. If the supervisor did not possess expert knowledge, the waste

was often not worth the change in actions. Using adjustable autonomy, agents never took

initiative so there was little difference between expert and non-expert scenarios. Because

the feat of finding all five missing people was accomplished so infrequently, these results

are not statistically significant (F/p value across expert level of 0.9/2.79, F/p value across

autonomy type of 0.01/0.922, F/p value of two-way interaction of 2.79/0.1207), but may

serve as an anecdotal indication to guide future studies.
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4.2.2 Secondary Task Performance

Secondary tasks involved finding and classifying backpack and distracting items. Metrics

which indirectly affected task performance such as the average searcher distance and the

percent of terrain coverage also fell into this category.

Backpack and Distracting Items

Overall, agents using adaptive autonomy allowed the supervisor to classify the most items

(Figure 4.7). This is statistically significant with an F-value of 28.0 and p-value of 0.0001.

However, this metric does not tell the whole story. 88 percent (400 out of 455) of the

items were distracting items. Adaptive autonomy’s strength was covering a large amount

of terrain effectively and quickly, allowing it to find many of the items, with a proportionally

high ratio of distracting items to backpack items. With a supervisor participating in mixed

initiative and adjustable autonomy, coverage was less inclusive but focused on areas with

high probability of containing the missing person and their backpack items. This enabled

mixed initiative and adjustable autonomy to out-perform adaptive autonomy when just

backpack items were considered (Figure 4.8). This is also statistically significant with

an F-value of 4.55 and p-value of 0.0143. The lone exception was the difference between

adjustable autonomy and mixed initiative, which was not significant (t-value of 0.62, p-

value of 0.05).

This trend holds when we consider the time needed to find the first backpack item on

the map, the first backpack item from each of four of the five missing people, and the

first backpack item from each of the five missing people (Figure 4.9). This was assuming

that one, four, and five missing people were found, respectively. These results were also

statistically significant; F- and p-values can be found in Appendix D. Adaptive autonomy

was quicker to find the backpack items; the only difference that was not statistically signif-

icant was between adjustable autonomy and mixed initiative with a non-expert supervisor

(t-value of 0.31, p-value of 0.05).
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Figure 4.7: Average percent of items classified

Figure 4.8: Average number of backpack items found
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Figure 4.9: Average time to find at least one item from various numbers of missing people

Distance and Coverage

Metrics that fall under distance and area coverage are very interconnected. Although these

metrics can be difficult to interpret, they can also provide insight into why the different

types of autonomy worked better than others in different scenarios.

Adaptive autonomy and mixed initiative resulted in the most distance covered by the

searchers (Figure 4.10). In both cases, the searchers had the autonomy to immediately

choose a search area if they would otherwise become idle, so their performance in this

metric was almost identical. Adjustable autonomy performed on average 15 percent worse

in this metric than adaptive autonomy. When agents at a medium or low level of autonomy

completed a task, they would stop moving to await further instructions, reducing their

possible searcher distance. These differences were statistically significant (F-value of 54.12,

p-value of 0.0001).

It must be noted that average searcher distance can be misleading when applied to live

WiSAR scenarios. Different types of searchers will move at different speeds (e.g. ground

searchers will move slower than air searchers, and horseback riders may move at different

speed than ATV riders), and the type of terrain will further affect travel. These are all
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Figure 4.10: Average searcher distance

factors that would affect the average searcher distance, and were not taken into account

by our simulator. The metric does show us, however, that adaptive autonomy and mixed

initiative can result in more travel, which may loosely be translated as giving a better

chance of discovery of the victim over agents employing adjustable autonomy.

Coverage is related to distance traveled, and is expressed as a percentage of the available

area since the four different scenarios had different amounts of accessible terrain. Figure

4.11 shows that adaptive autonomy resulted in the best coverage, followed by mixed ini-

tiative and adjustable autonomy, in that order. These results were statistically significant

with an F-value of 52.61 and p-value of 0.0001.

In addition, the differences between expert and non-expert supervisors were statistically

significant (F-value of 7.88 and p-value of 0.0067) for adjustable autonomy (t-value of 12.18

and p-value of 0.05) and mixed initiative (t-value of 3.08 and p-value of 0.05). Under

both these types of autonomy, expert supervisors would focus their search on areas their

“expert knowledge” indicated had the highest probability of containing the missing people,

significantly reducing the amount of area they covered (while keeping their travel distance

high).

In other words, coverage is not necessarily proportional to searcher distance. Since
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Figure 4.11: Average coverage

the searchers operating under mixed initiative traveled as much distance as the searchers

using adaptive autonomy, the difference in the amount of coverage is due to the searchers

operating under mixed initiative repeatedly covering the same ground. This is not nec-

essarily bad, since a single pass over a given search area does not result in a 100 percent

probability of detection, and some areas have a higher probability of containing the missing

person than others. In other words, redundancy can increase our probability of detection.

Redundancy is also reflected in the probability of success, where repeatedly searching in

areas of high probability of containing the missing person can lead to a high probability

of success while still result in a low coverage value.

When broken down by terrain type, adaptive autonomy did far better on simple terrains

than on complex ones. The agents operating under adaptive autonomy did not have the

same level of intelligence as most human supervisors when it came to path planning or

choosing their next search area, resulting in more time spent traveling on complex terrains

and less time searching. Agents operating under adjustable autonomy or mixed initiative

saw a far smaller difference in performance between complex and simple terrains (Figure

4.12). In future work that attempts to combine the different types of autonomy to take
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Figure 4.12: Average coverage by terrain type

advantage of each of their strengths, specifically adaptive autonomy and mixed initiative,

this might be a key area to consider.

4.2.3 Management Overhead/Workload

Management overhead and workload metrics look at the performance of the supervisor.

Although they do not directly measure task performance, they are connected and as a

result, cannot be ignored. Decreasing management overhead or workload can improve task

performance, and increasing overhead or workload can negatively affect task performance.

Management Overhead

To gives us an initial insight into the amount of management overhead, we can look at

the amount of time that agents sit idle. Although searchers operating under adaptive

autonomy and mixed initiative are never inactive by design, adjustable autonomy results

in the searchers sitting idle 18 percent of the time. This was due to high operator workload

(the supervisor unable to respond), a lack of supervisor awareness when agents finished a

task (the supervisor unaware of a need to respond), and difficulty in finding the inactive

41



www.manaraa.com

Figure 4.13: Average time to classify items

workers because of interface design or other reasons.

We can also look at the length of time it took supervisors to classify items that were

found. As expected, speed of classifying was roughly inversely proportional to the amount

of workload. Adaptive autonomy served as a baseline measurement, since the supervisors

had no other workload than classifying items. Speed was correspondingly high, on average

163 timesteps. When searchers were using adjustable autonomy, supervisors had to give

them a lot of attention and their performance suffered (923 timesteps per classification).

Using mixed initiative, supervisors were able to take advantage of the searchers’ increased

independence and focus more time on classifying items, resulting in 550 timesteps per

classification on average (Figure 4.13). These results were statistically significant (F-value

of 5.97, p-value of 0.0043).

One more interesting metric can be considered, the average length of time between

finding the first item belonging to a missing person, and finding the person. This takes into

account several variables such as response speed and effectiveness of search. Interestingly,

adaptive autonomy resulted in the fastest time, with mixed initiative second and adjustable

autonomy last (Figure 4.14). These results were statistically significant (F-value of 5.39,

p-value of 0.007).

This difference could be explained by three factors. First and possibly most important,
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Figure 4.14: Average time between finding first item and missing person

supervisors managing searchers using adjustable autonomy and mixed initiative had the

workload of managing the searchers and search areas in addition to classifying items, a

task that adaptive autonomy did not require the supervisor to do. As a result, a missing

person could languish in the “found items” list far longer than it would under adaptive

autonomy before being classified. Two, searchers using adaptive autonomy and mixed

initiative reacted instantly to the classification of a backpack item by creating a more

specific search area and beginning a detailed search, resulting in a faster discovery than

searchers using adjustable autonomy. Three, qualitative observations indicated that the

human supervisor frequently became impatient with searchers. If the searchers employed

adjustable autonomy or mixed initiative, the supervisors could micromanage them. Each

time the supervisor reassigned them, however, the searchers were forced to restart their

search, delaying the discovery of the missing person.

Workload

Figure 4.15 shows the supervisor’s workload in scenarios using adjustable autonomy com-

pared to scenarios using mixed initiative. Workload in these measurements included se-
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Figure 4.15: Workload

lecting searchers, creating search areas, assigning searchers to a search area, assigning

searchers to travel to a point on the map, deleting search areas, and changing searcher

autonomy levels. Workload in scenarios using adaptive autonomy is not applicable since

supervisors were not given the ability to perform any of the afore-mentioned actions.

We can see that due to the agents’ increase in initiative, scenarios where agents em-

ployed mixed initiative resulted in less workload for the supervisor. This result is statisti-

cally significant (F-value of 54.75, p-value of 0.0001). In addition, this benefit is reflected

in such metrics as the time it took supervisors to classify items. With less workload,

supervisors were able to devote more time to classifying items, resulting in a shorter aver-

age time to classify each item. In a real wilderness search and rescue scenario, increasing

searcher autonomy might allow the supervisor more time to manage logistics, direct agents

in trouble areas, and talk to media, family, or witnesses.

4.2.4 Discussion

As expected, adaptive autonomy, adjustable autonomy, and mixed initiative each per-

formed well in different metrics. Of note, adjustable autonomy and mixed initiative were
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strongest in metrics falling under the primary and secondary task performance categories,

while adaptive autonomy fared especially well in management overhead/workload met-

rics. The supervisor’s level of expertise made little difference in the results; expert and

non-expert supervisors were helped or hindered by the type of autonomy equally in most

metrics.

A qualitative observation was made that when mixed initiative or adjustable autonomy

was used, most human controllers abandoned an area after finding the target in it. When

adaptive autonomy was being used, the agents would complete searching an area regardless

of whether or not a missing person had been found in it. This tended to weight the

probability of success in favor of adaptive autonomy, even if the overall success metric

of number of missing people found showed that mixed initiative or adjustable autonomy

performed better. As a result, we might expect that in an experiment designed to measure

only probability of success, without searchers actually finding the missing people and

therefore short-circuiting their search, mixed initiative and adjustable autonomy would

perform even better when compared to adaptive autonomy.

In addition, during the course of the experiments, it was observed that in scenarios

using adjustable autonomy or mixed initiative, supervisors frequently and unnecessarily

decreased performance of the agents by micromanagement. Often, the supervisors would

grow impatient as the searchers searched an area. This would cause the supervisor to

delete the search area, forcing the searchers to stop work. The supervisor would then

create a new search area that almost exactly matched the original search area, perhaps

with one border extended or moved, then reassign the searchers to the new area. This

resulted in the searchers not only restarting their search, but largely covering the same

ground they had previously covered. Although some redundancy in coverage is desired

in areas that have a high probability of containing the missing person, the redundancy

described above is a result of impatience and not expert knowledge.

Also, supervisors would often not take travel time into account, assigning agents to

search areas a long distance away rather than assigning agents after a spatial assessment
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of free agents and unassigned search areas. As the agents operating under adaptive au-

tonomy did not take travel time into account either, this resulted in a somewhat uniform

degradation of performance, and supervisors in live scenarios are presumably experienced

enough to avoid this mistake.
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Chapter 5

Conclusions

5.1 Conclusions

Table 5.1 reviews the results from the individual metrics. Note that we have subjectively

divided the metrics by relative importance, as outlined in section 3.3.

Scenarios employing mixed initiative resulted in better performance than scenarios

where adaptive or adjustable autonomy was used. Although mixed initiative did not rank

first in several metrics, it ranked first in more of the metrics than either adaptive or ad-

justable autonomy, including both of the “High Importance” metrics and many of the

“Medium Importance” metrics. In metrics where it did not rank first, it came in second

place in many–often a very close second. Of note, adjustable autonomy and mixed initiative

were strongest in metrics falling under the primary and secondary task performance cate-

gories, while adaptive autonomy fared especially well in management overhead/workload

metrics.

This variance of performance suggests that mixed initiative is the best primary au-

tonomy type to use. Searchers operating under mixed initiative have all the initiative of

adaptive autonomy, while still giving the supervisor the control of adjustable autonomy.

This suggests that it is possible to emulate any of the studied autonomy types (and their

performance) using just mixed initiative.

Whether in wilderness search and rescue or another domain, the supervisor can deter-
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Table 5.1: Overall Autonomy Rankings

High Importance Metrics Adaptive Adjustable Mixed Initiative

Probability of success 2nd 1st

Number of targets found 1st 1st

Medium Importance Metrics Adaptive Adjustable Mixed Initiative

First backpack item 1st 2nd

Greatest improvement from non-expert to expert 2nd 1st

Time to find all five targets N/A 1st 1st

Time from first item to target 1st 2nd

Time to classify items 1st 2nd

Number of backpack items classified 1st 2nd

Variance between terrain types 2nd 1st

Workload N/A 2nd 1st

Low Importance Metrics Adaptive Adjustable Mixed Initiative

Searcher distance 1st 1st

Simple coverage 1st 2nd

Number of items classified 1st 2nd

mine the most important metrics by careful analysis. Following that, the type of autonomy

which would result in the best performance in those metrics can be determined. As a result

of the agents operating under mixed initiative, if the type of autonomy that results in the

best performance is adaptive autonomy, the supervisor can allow the robotic agents to take

initiative. If adjustable autonomy, the supervisor can take a more hands-on approach to

control. In addition, because of the mixed initiative approach, the supervisor can experi-

ment with the correct level of attention to give. In other words, rather than modifying the

type of autonomy on the searchers, a supervisor should modify his/her behavior, inspired

by adaptive or adjustable autonomy.

For example, adaptive autonomy was able to locate backpack items faster than ad-

justable autonomy or mixed initiative (Figure 4.9), but searchers operating under ad-

48



www.manaraa.com

justable autonomy or mixed initiative were able to locate more (Figure 4.8). This indi-

cates that supervisors should initially allow agents using mixed initiative to operate at

their highest autonomy level, taking advantage of the searchers’ speed in creating search

areas and assigning themselves to the areas, as well as their minimal idleness time. Once

the backpack items are located, the supervisors can use their superior knowledge of the

overall situation to assess the best local areas to search and the length of time or depth of

search.

5.2 Future Work

Several areas bear more consideration. First, we found that with the relative smallness

of the overall search area, most experimenters were able to locate backpack items from

most, if not all of the missing people before time ran out. This held true whether adaptive

autonomy, adjustable autonomy, or mixed initiative was true. It also had the effect of min-

imizing the importance of the expert knowledge. Using expert knowledge, the supervisors

were able to locate the missing people quickly, but even without the expert knowledge,

there was enough time and the search area was small enough that most of the supervi-

sors eventually located most of the missing people anyway. If agents were only capable of

searching a much smaller fraction of the total search area due to increased search area size

or less time (situations more true to live wilderness search and rescue scenarios), it is our

prediction that the expert knowledge would increase in value dramatically.

In addition, there are several areas where variations could be explored. The number

and capabilities of the searchers, the various types or levels of autonomy, different terrains,

the type and number of secondary tasks, the type and amount of information given the

supervisor, etc.

There are several larger areas that bear more discussion, however. In our experiments,

we limited our attention to agents employing a supervisor-supervised relationship. Under

this circumstance, we were able to show that that mixed initiative can provide better

performance over several key metrics. Future experiments may look at situations involving
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peer-to-peer relationships to see if the results hold. Is one peer possessing expert knowledge

able to influence the overall performance to any major degree? How many peers possessing

expert knowledge unknown by the remaining peers would it take to affect performance to

a given degree?

Although we focused on a homogeneous set of agents (generic “searchers” with a stan-

dard set of capabilities), extending to heterogeneous agents would improve ecological va-

lidity. Different classes of agents could be given different speeds, varying abilities to com-

municate, and different task capabilities. For example, unmanned aerial vehicles (UAVs)

have the ability to fly, allowing them to not only cover ground faster (albeit with a pos-

sibly lower probability of detection), but allowing them to search terrain inaccessible to

ground searchers. Even among ground searchers, abilities could differ. Dog teams can fol-

low chemical trails, teams with SCUBA gear could search lakes or waterways, and teams

with specialized climbing gear could search cliffs or other mountainous regions. With these

differences in capabilities, each class of agents would have different levels of autonomy and

events to trigger changes in that level.

Blurring the line between several of the ideas above, introducing imperfect information

and task execution could lead to even greater ecological validity. In real life, especially a

domain as inexact and error-prone as the “wilderness,” situations are rarely as precise as

a simulation. Noise could be introduced into location reporting or other communication

between searchers and supervisors, searchers could perform tasks imperfectly or outright

incorrectly, the ownership of discovered items could be ambiguous, and the missing person

usually has the ability to change their location throughout the duration of the search.

Each of these issues could be explored, along with their effect on overall performance.
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Appendix A

Workload Data T-Values

This appendix contains the raw data from experiment one, where performance was com-

pared over adaptive autonomy, adjustable autonomy, and mixed initiative; and over high

and low workload.

For each metric shown, the first row contains the raw value calculated over all scenarios.

The data is displayed in the following format: high workload/low workload/overall or

average.

The second row contains the t-values and degrees of freedom for nine selected interac-

tions. The degrees of freedom for each interaction are enclosed in parentheses.

The first three t-values (in the adaptive autonomy column) are adaptive autonomy/high

workload compared to adaptive autonomy/low workload; adaptive autonomy/high work-

load compared to adjustable autonomy/high workload; adaptive autonomy/low workload

compared to adjustable autonomy/low workload.

The next three t-values (in the adjustable autonomy column) are adjustable auton-

omy/high workload compared to adjustable autonomy/low workload; adjustable auton-

omy/high workload compared to mixed initiative/high workload; adjustable autonomy/low

workload compared to mixed initiative/low workload.

The final three t-values (in the adjustable autonomy column) are mixed initiative/high

workload compared to mixed initiative/low workload; mixed initiative/high workload com-

pared to adaptive autonomy/high workload; mixed initiative/low workload compared to
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adaptive autonomy/low workload.

Table A.1: Workload Data and T-Values

Metric Name

Adaptive Values Adjustable Values Mixed Initiative Values

Average time between finding first item and finding target of the item

6603.3/6061.7/6398.7 7791.8/8591.3/8145.1 7631.8/9374.2/8737.6

16.22(10)/76.91(11)/84.3(9) 1.92(10)/20.54(9)/42.65(12) 59.12(11)/38.44(10)/132.56(11)

Average searcher distance

2862.1/2889.2/2873.4 2371.8/2412.5/2392.2 2874/2855/2862.3

3.48(10)/51.49(11)/46.49(9) 3.5(10)/59.01(9)/46.61(12) 3.63(11)/1.88(10)/4.93(11)

Average timesteps inactive

0%/0%/0% 14.7%/18%/16.3% 0%/0%/0%

0(N/A)/10.15(11)/11.2(9) 1.5(10)/10.15(9)/11.2(12) 0(N/A)/0(N/A)/0(N/A)

Average length of time to classify items

519.5/256/445.2 1726.4/926.3/1432.7 2059/511.3/1275.7

18.68(10)/62.6(11)/66.53(9) 42.89(10)/25.44(9)/31.64(12) 79.43(11)/78.94(10)/30.96(11)

Simple coverage

98.5%/99.8%/99.1% 80.5%/83.3%/81.9% 89.6%/92.1%/91.1%

1.25(10)/9.01(11)/9.87(9) 1.16(10)/4.09(9)/4.54(12) 1.5(11)/6.06(10)/6.08(11)

Average number of items classified

76.1%/76.1%/76.1% 59.4%/65.6%/62.5% 62.8%/71.8%/68.4%

0.03(10)/9.2(11)/6.13(9) 3.02(10)/1.67(9)/3.44(12) 5.09(11)/7.66(10)/2.98(11)

Number of targets found

4/3.4/3.8 4/3.2/3.6 3.8/4.1/4

1.02(10)/0(11)/0.4(9) 1.36(10)/0.29(9)/1.74(12) 0.51(11)/0.31(10)/1.28(11)

Number of times changed autonomy

306/302.4/304.5 441/639.5/540.3 943.4/735.5/815.5

52



www.manaraa.com

0.46(10)/17.71(11)/35.74(9) 21.37(10)/46.6(9)/10.78(12) 19.89(11)/62.72(10)/53.03(11)

Number of backpack items found

37.9/35.2/36.8 34.7/34.7/34.7 34.2/40.1/37.8

2.21(10)/2.19(11)/0.39(9) 0(10)/0.23(9)/3.61(12) 3.02(11)/2(10)/3.52(11)

Number of times found all 5 targets

0.4/0/0.3 0.5/0/0.3 0.4/0.5/0.5

1.55(10)/0.17(11)/0(N/A) 1.65(10)/0.22(9)/1.93(12) 0.24(11)/0.07(10)/1.93(11)

Workload

1.2/1/1.1 72.7/90.8/81.8 45.6/54.1/50.8

0.64(8)/30.45(10)/38.75(8) 5.52(10)/10.19(9)/13.47(12) 4.45(11)/34.24(9)/37.08(10)
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Appendix B

Expert Data T-Values

This appendix contains the raw data from experiment two, where performance was com-

pared over adaptive autonomy, adjustable autonomy, and mixed initiative; and over expert

and non-expert supervisors.

For each metric shown, the first row contains the raw value calculated over all scenar-

ios. The data is displayed in the following format: expert supervisor/non-expert supervi-

sor/overall or average.

The second row contains the t-values and degrees of freedom for nine selected interac-

tions. The degrees of freedom for each interaction are enclosed in parentheses.

The first three t-values (in the adaptive autonomy column) are adaptive autonomy/expert

supervisor compared to adaptive autonomy/non-expert supervisor; adaptive autonomy/expert

supervisor compared to adjustable autonomy/expert supervisor; adaptive autonomy/non-

expert supervisor compared to adjustable autonomy/non-expert supervisor.

The next three t-values (in the adjustable autonomy column) are adjustable auton-

omy/expert supervisor compared to adjustable autonomy/non-expert supervisor; adjustable

autonomy/expert supervisor compared to mixed initiative/expert supervisor; adjustable

autonomy/non-expert supervisor compared to mixed initiative/non-expert supervisor.

The final three t-values (in the adjustable autonomy column) are mixed initiative/expert

supervisor compared to mixed initiative/non-expert supervisor; mixed initiative/expert su-

pervisor compared to adaptive autonomy/expert supervisor; mixed initiative/non-expert
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supervisor compared to adaptive autonomy/non-expert supervisor.

Table B.1: Expert Data and T-Values

Metric Name

Adaptive Values Adjustable Values Mixed Initiative Values

Average time between finding first item and finding target of the item

6125.3/6179.3/6150.7 10347/10487.3/10410.4 8033.3/8211.4/8118.1

30.05(17)/187.74(21)/169.96(19) 36.47(23)/65.96(22)/66.65(21) 24.97(20)/92.06(19)/105.16(18)

Average searcher distance

2961.7/2954.4/2958.1 2425.8/2445.6/2435.3 2907.4/2910.9/2909.2

4.42(19)/106.3(21)/89.31(21) 2.9(23)/90.34(22)/83.21(21) 1.77(20)/15.92(19)/9.74(20)

Average length of time to classify items

183.3/142.9/163.4 1038.6/809.2/922.7 744.6/549.9/646.4

12.43(19)/91.99(21)/79.05(21) 19.4(23)/23.44(22)/22.84(21) 14.22(20)/56.94(19)/73.7(20)

Uniform weighted probability of success

36.5%/35.5%/36% 29.9%/29.6%/29.7% 28%/28.5%/28.2%

1.87(19)/11.32(21)/9.21(21) 0.53(23)/5.33(22)/3.88(21) 0.51(20)/17.14(19)/14.63(20)

Linear weighted probability of success

47.1%/49.1%/48.1% 53.2%/53.6%/53.4% 57.5%/56.9%/57.2%

2.16(19)/8.18(21)/7.16(21) 0.56(23)/8.41(22)/8.24(21) 1.29(20)/16.15(19)/17.67(20)

Limit weighted probability of success

49%/50.1%/49.6% 53.4%/53.8%/53.6% 57.7%/57%/57.3%

1.08(19)/6.45(21)/5.81(21) 0.56(23)/8.44(22)/8.26(21) 1.24(20)/14.88(19)/15.18(20)

Exponential weighted probability of success

47%/48.7%/47.9% 52.7%/53%/52.8% 56.9%/56.4%/56.6%

1.81(19)/7.87(21)/6.94(21) 0.59(23)/8.45(22)/8.25(21) 1.27(20)/16.21(19)/17.2(20)

Sigmoidal weighted probability of success

47.1%/49.1%/48.1% 53.2%/53.6%/53.4% 57.5%/56.9%/57.2%
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2.19(19)/8.15(21)/7.1(21) 0.56(23)/8.39(22)/8.22(21) 1.3(20)/16.03(19)/17.51(20)

Simple coverage

89.1%/87.6%/88.4% 45.7%/62.5%/53.8% 61.9%/66.8%/64.4%

1.97(19)/33.49(21)/15.87(21) 12.18(23)/12.31(22)/2.54(21) 3.08(20)/19.06(19)/14.14(20)

Simple coverage broken down by terrain

93.7%/94.3%/94% 48.1%/62.2%/55.9% 62.4%/65.2%/63.9%

0.74(13)/38.77(14)/22.66(15) 8.68(16)/8.95(14)/1.73(17) 1.67(15)/23.07(14)/22.39(14)

Simple coverage broken down by terrain

70.7%/72%/71.5% 41.9%/63.8%/48.2% 60.5%/71.6%/66.1%

2.04(4)/19.2(5)/6.25(4) 11.7(5)/7.69(6)/4.15(2) 4.55(3)/4.84(3)/0.97(4)

Average number of items classified

41.4%/40.3%/40.9% 29.1%/32.2%/30.6% 37.4%/34.9%/36.1%

1.89(19)/14.06(21)/7.93(21) 3.8(23)/10.03(22)/3.29(21) 2.63(20)/4.46(19)/4.75(20)

Number of targets found

2.6/2.9/2.7 3.9/3.7/3.8 4/3.3/3.7

0.14(17)/3.06(21)/2.31(18) 0.46(22)/0.17(22)/0.4(20) 0.96(20)/2.97(19)/1.87(18)

Number of backpack items found

23.1/23/23.1 31.5/26.4/29 29.2/24.8/26.9

0.79(19)/8.78(21)/3.56(21) 4.68(23)/2.18(22)/0.62(21) 2.87(20)/5.4(19)/2.89(20)

Time to find all 5 targets

(N/A)/(N/A)/(N/A) 483.3/443.3/463.3 397.4/554.7/456.4

149.63(2)/72.57(2) 5.79(6)/13.55(7)/16.59(5) 25.68(6)/72.94(3)/198.35(1)

Number of times found all 5 targets

0/0/0 0.3/0.3/0.3 0.5/0.3/0.3

0(N/A)/1.6(21)/1.65(19) 0.09(23)/0.51(22)/0.21(21) 0.61(20)/2.09(19)/1.32(18)

Workload

1.2/2.4/1.8 108.8/110/109.4 93.8/90.7/92.2

1.64(19)/68.81(21)/47.43(21) 0.43(23)/5.68(22)/3.97(21) 1.79(20)/42.98(19)/51.19(20)
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Average time to find first backpack item

173.2/185.6/179.4 98.5/115.4/106.6 105.4/129.5/118

6.37(19)/30.51(21)/26.15(21) 7.9(23)/2.49(22)/0.31(21) 3.37(20)/21.21(19)/23.76(20)

Average time to find all 5 first backpack items

336/341.3/338.6 171.5/222.1/194.7 193/264.2/228.9

5.65(19)/57.26(21)/34.98(21) 16.45(23)/7.15(22)/6.35(21) 12.9(20)/36.63(19)/28.94(20)

Average time to find first 4 backpack items

311.4/325.4/318.4 142.7/197.6/168.5 170.6/242.2/208

7.6(19)/59.38(21)/36.32(21) 19.3(23)/7.93(22)/5.08(21) 12.41(20)/36.51(19)/30.59(20)
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Appendix C

Workload Data F-Values

This appendix contains the F- and p-values resulting from an analysis of variance (ANOVA)

on data from experiment one, where performance was compared over adaptive autonomy,

adjustable autonomy, and mixed initiative; and over high and low workload.

For each metric shown, the first row contains the F-value and the second row contains

the p-value. The degrees of freedom in the numerator is two, and the degrees of freedom

in the denominator is 31.

Table C.1: Workload Data and F/p-Values

Difference Across Autonomy Difference Across Workload Two-Way Interaction

Average time between finding first item and finding target of the item

0.77 2.22 0.26

0.387 0.1256 0.7727

Average searcher distance

0.07 13.29 0.03

0.7931 0.0001 0.9705

Average timesteps inactive

0.08 16.87 0.2

0.7792 .0001 0.8198
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Average length of time to classify items

5.04 2.68 2.38

0.032 0.0844 0.1093

Simple coverage

0.11 6.5 0.12

0.7424 0.0044 0.8873

Average number of items classified

1.62 5.6 1.04

0.2126 0.0084 0.3655

Number of targets found

0.7 0.43 1

0.4092 0.6543 0.3794

Number of times changed autonomy

0.57 12.66 1.66

0.456 0.0001 0.2066

Number of backpack items found

0.24 0.47 0.82

0.6277 0.6294 0.4498

Number of times found all 5 targets

2.47 0.92 1.96

0.1262 0.4091 0.1579
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Appendix D

Expert Data F-Values

This appendix contains the F- and p-values resulting from an analysis of variance (ANOVA)

on data from experiment two, where performance was compared over adaptive autonomy,

adjustable autonomy, and mixed initiative; and over expert and inexpert supervisors.

For each metric shown, the first row contains the F-value and the second row contains

the p-value. The degrees of freedom in the numerator is two, and the degrees of freedom

in the denominator is 62.

Table D.1: Expert Data and F/p-Values

Difference Across Autonomy Difference Across Workload Two-Way Interaction

Average time between finding first item and finding target of the item

0.5 5.39 0.02

0.4822 0.007 0.9802

Average searcher distance

0.02 54.12 0.07

0.888 .0001 0.9325

Average length of time to classify items

0.67 5.97 0.12

0.4163 0.0043 0.8871
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Simple coverage

7.88 52.61 3.48

0.0067 .0001 0.037

Average number of items classified

0.01 28 2.67

0.9207 .0001 0.0772

Number of targets found

0.53 7.37 0.28

0.4695 0.0014 0.7568

Number of backpack items found

3.76 4.55 0.28

0.057 0.0143 0.7567

Number of times found all 5 targets

0.17 4.61 0.46

0.6816 0.0137 0.6335

Probability of Success

1.13 89.53 0.84

0.2919 .0001 0.4366

Workload

0.01 54.75 0.05

0.9207 .0001 0.9513

Average time to find first backpack item

2.11 17.47 0.3

0.1515 .0001 0.7419

Average time to find all 5 first backpack items

6.57 25.87 0.29

0.0129 .0001 0.7493

Average time to find all 5 targets
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0.9 0.01 2.79

2.79 0.922 0.1207

Average time to find first 4 backpack items

7.11 26.21 0.3

0.0098 .0001 0.7419
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